Centre Number Candidate Number Name www.PapaCambridge.com ## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level ## **COMBINED SCIENCE** 5129/02 Paper 2 October/November 2005 2 hours 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. Answer all questions. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 20. If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page. Stick your personal label here, if provided. For Examiner's Use This document consists of 18 printed pages and 2 blank pages. INTERCITY - CAMPBIDGE | | | | | | 2 | |---|--|--|--|---|--------------| | | | | 2 | | MMM. PADACAN | | 1 Rubi | idium | , Rb, is below potassium ir | n Group 1 of the | Periodic Table. | ASC . | | (a) | State | e the formula of the rubidiu | m ion | | | | (b) | (i) | Rubidium and potassium b | ooth react with co | old water. | | | | | Suggest one difference in | the way that they | react. | | | | | | | | | | | | | | | [1] | | (| (ii) | State the products of the re | eaction between | rubidium and cold water. | | | | | | an | d | [2] | | | | | an | | | | 2 The | follov | ving is a list of gases. | all | | | | 2 The amm | | ving is a list of gases. | on dioxide | chlorine | | | | nonia | ving is a list of gases. | on dioxide | | | | amm
hydr
Ansv | nonia
roge | ving is a list of gases. | on dioxide
gen | chlorine
oxygen | | | amm
hydr
Answ
than | nonia
roge
wer the | ving is a list of gases. carbo n nitrog ne following questions by so | on dioxide
gen | chlorine
oxygen | | | amm
hydr
Ansv
than
Nam | nonia
roge
wer the
once | ving is a list of gases. carbo n nitroo ne following questions by see or not at all. | on dioxide
gen
electing from the | chlorine oxygen list. Each gas may be use | | | amm
hydr
Answ
than
Nam
(a) | nonia
roge
wer the
once
ne the | ving is a list of gases. carbo n nitrog ne following questions by see or not at all. gas that | on dioxide
gen
electing from the | chlorine oxygen list. Each gas may be use | | | Answithan Nam (a) (b) | nonia
rogen
wer the
once
ne the
relight | ving is a list of gases. carbo n nitrog ne following questions by see or not at all. e gas that nts a glowing splint, | on dioxide
gen
electing from the | chlorine oxygen list. Each gas may be use | | | Answithan Nam (a) (b) (c) | nonia
rogen
wer the
once
ne the
religion
is pa | ving is a list of gases. carbo n nitrog ne following questions by see or not at all. e gas that nts a glowing splint, | on dioxide
gen
electing from the | chlorine oxygen list. Each gas may be use | | Fig. 3.1 | (a) | Nar | ne the parts A, B, C and D. | |-----|------|--| | | Α | | | | В | | | | С | | | | D | [4] | | (b) | Stat | te the type of cell shown in Fig. 3.1. | | | | [1] | | (c) | (i) | Name the process by which water moves into this cell. | | | | [1] | | | (ii) | State three conditions for the process named in (c)(i) to occur. | | | | 1 | | | | 2 | | | | 3[3] | 4 Fig. 4.1 shows a measuring cylinder containing liquid paraffin. Fig. 4.1 (a) State the volume of the liquid paraffin shown in the measuring cylinder in Fig. 4.1.cm³ [1] **(b)** A student measures the mass of the empty measuring cylinder and then containing the liquid paraffin. His results are shown in Fig. 4.2. | mass of empty measuring cylinder | 20.2 g | |---|--------| | mass of measuring cylinder containing the liquid paraffin | 50.6 g | Fig. 4.2 Calculate (i) the mass of the paraffin,[1] (ii) the density of the paraffin. | 5 | (2) | Suggest a property of aluminium that makes it useful in the manufacture of (i) aircraft, (ii) food containers. | |---|--------------|--| | 3 | (a) | (i) aircraft, | | | | (ii) food containers | | | (b) | Fig. 5.1 shows an electric cable. | | | | plastic coating metal core | | | | Fig. 5.1 | | | | Name the metal most commonly used for the core[1] | | 6 | One | s isotope of nitrogen is represented as | | | | ¹⁵ N | | | (a) | State the number of protons, neutrons and electrons in an atom of this isotope. number of protons | | | | number of neutrons | | | <i>(</i> • · | number of electrons | | | (b) | Explain why nitrogen forms the ion N³- rather than the ion N² | | | | [2] | | | (c) | Nitrogen reacts with lithium to form lithium nitride. The lithium ion is Li ⁺ . Construct the formula of lithium nitride. | | | | [1] | (a) Fig. 7.1 shows one type of plant growing in a garden. 7 Fig. 7.1 A and B show two different types of reproduction carried out by this plant. State the type of reproduction shown at | | (1) | A , | | | |-----|------|--|-----------|----------| | | | В | | [2] | | | (ii) | State the difference between the offspring resulting from treproduction. | these two | types of | | | | | | | | | | | | [2] | | (b) | | other type of plant produces fruits that are bright red and soft. plain how this adaptation helps the plant to colonise new areas. | | | | | | | | | | | | | | [2] | For Examiner's Use (c) Some plants are growing on the banks of a river. Over a period of years, an island forms in the middle of the river. Plants grow on the island as shown in Fig. 7.2. | pla | nts | |-----|--------| | | type 1 | | 000 | type 2 | Fig. 7.2 Suggest two ways by which seeds from plants on the river banks reached the island. | 1 | |---| |---| 2.[2] www.PapaCambridge.com (a) On Earth, a spacecraft has a weight of 50 000 N. The gravitational field strengt 8 Earth's surface is 10 N/kg. Calculate the mass of the spacecraft. [1] **(b)** On the Moon, the weight of the spacecraft is less than 50 000 N. Explain why it weighs less on the Moon.[1] (c) (i) State the relation between force F, mass m and acceleration a.[1] The rockets on the spacecraft produce a force of 20 000 N. (ii) Calculate the acceleration of the spacecraft. [2] (a) A laboratory thermometer contains mercury. The thermometer is taken from hot water and placed in cold water. State what happens to the volume of the mercury, the mass of the mercury.[2] **(b)** Clinical thermometers may also contain mercury. State two ways in which clinical thermometers differ from laboratory thermometers. 1. 2.[2] 9 **10** Fig. 10.1 shows the reduction of copper(II) oxide by hydrogen. Fig. 10.1 The equation for the reaction is (a) State what is meant by the term reduction. $$\mathrm{CuO} \ + \ \mathrm{H_2} \ \rightarrow \ \mathrm{Cu} \ + \ \mathrm{H_2O}$$ | | |
 |
 |
 |
 |
 |
[1] | |------|---|------|------|------|------|------|---------| |
 | _ | | | | | | | | (b) (i) | Calculate the relative molecular mass of copper(II) oxide. | |---------|--| | | [A _r : Cu,64; O,16; H,1.] | | | [1] | | (ii) | Calculate the relative molecular mass of water. | | | [1] | | (iii) | Calculate the mass of water produced from 4 g of copper(II) oxide. | | | | 11 Fig. 11.1 shows the liver, part of the small intestine and associated blood vessels. Fig. 11.1 | (a) | Glucose and amino acids are absorbed into the blood from the small intestine. | | |-----|---|-----| | | Describe how the liver changes each of these nutrients. | | | | glucose | | | | | [2] | | | amino acids | | | | | [2] | | (b) | State two other functions of the liver. | | | | 1 | | | | | | For Examiner's Use 12 Fig. 12.1 shows an electrical heater being used to heat water in a beaker. Fig. 12.1 (a) When a 12 V supply is connected across the heater, the power of the heater is 30 W. Calculate the current in the heater. [2] - **(b)** Thermal energy can be transferred by conduction, convection or radiation. State the main method by which thermal energy is transferred - (i) through the walls of the beaker, (ii) from the water near the bottom of the beaker to the water at the top.[2 13 Fig. 13.1 shows changes of state. solid $$\overset{\mathbf{W}}{\underset{\mathbf{X}}{\longleftarrow}}$$ liquid $\overset{\mathbf{Y}}{\underset{\mathbf{Z}}{\longleftarrow}}$ gas | | * | | |------|---|-------------------| | | 12 | For
Fxaminer's | | Fig. | . 13.1 shows changes of state. | Use | | | . 13.1 shows changes of state. Solid $\frac{W}{X}$ liquid $\frac{Y}{Z}$ gas Fig. 13.1 | hbridge.com | | | Fig. 13.1 | | | (a) | State the letter, W, X, Y or Z, that represents | | | | (i) condensation, | | | | (ii) melting [2] | | | (b) | Draw a diagram to show the arrangement of the particles in a gas. | | | | | | | | [1] | | | (c) | Describe differences in the arrangement and the movement of the particles when a solid changes to a liquid. | | | | | | | | | | | (a) | An a | athlete is walking to the start of a race. | |-----|-------|---| | | (i) | Name the type of respiration in her muscles as she walks. | | | (ii) | Write a word equation for this type of respiration. | | ı | (iii) | State the advantage to the body of this type of respiration. [1] | | (b) | A di | race starts and she runs. fferent type of respiration takes place in her muscles when she is running as fast as can. | | | (i) | Write a word equation for this type of respiration. | | | (ii) | [2] State the advantage to the body of this type of respiration[1] | | (c) | | re is a greater amount of two gases in expired air than in inspired air. | | | Nan | ne the other gas. | | | | [1] | | (d) | Incr | eased physical activity causes an increase in the rate and the depth of breathing. | | | Sug | gest two ways in which these increases are helpful to the body. | | | 1 | | www.PapaCambridge.com 15 Fig. 15.1 shows a ray of light passing through a parallel-sided glass block. Some of is reflected at the surface of the block. Normals to the glass surface are shown. Fig. 15.1 - (a) State the value of the angle X.....[1] (b) Calculate the value of the angle Y.[1] - (c) Calculate the refractive index of the glass. For Examiner's Use **16** Fig. 16.1 shows an electric circuit. Fig. 16.1 (a) For one setting of the variable resistor, the ammeter reading is 0.20 A and the voltmeter reading is 0.80 V. Calculate the resistance of the fixed resistor R. [3] **(b)** The resistance of the variable resistor is increased. State what happens to the reading on | (i) | the ammeter, | |-----|--------------| |-----|--------------| (ii) the voltmeter.[2] **17** Study the following series of reactions. | (a) | Identify | substances | Α, | В, | C | and | D | | |-----|----------|------------|----|----|---|-----|---|--| |-----|----------|------------|----|----|---|-----|---|--| | Α | | |---|---------| | В | | | С | | | D |
[4] | **(b)** Draw a diagram to show the structure of a molecule of ethanol. [1] (c) Colourless liquid C turns damp Universal Indicator paper red. State what this shows about colourless liquid C. Fig. 18.1 shows a simple transformer. Fig. 18.1 | (a) | The | secondary | coil i | is | labelled. | |-----|-----|-----------|--------|----|-----------| |-----|-----|-----------|--------|----|-----------| | (/ | | | |-----|------|--| | | Stat | te the name of coil A , | | | (ii) | the material used for the core[2] | | (b) | | plain why the input to the transformer must be an alternating current, not a direct rent. | | | | | | | | | | | | [3] | **BLANK PAGE** www.PapaCambridge.com 19 ## **BLANK PAGE** www.PapaCambridge.com Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. | | Elements | |---------|-----------------| | SHEET | of the | | DATA SI | Table | | Δ | Periodic | | | The | | | | | | | | | ומוש | מוכ ו מסו | ם חום | | 6.5 | | | | | | | | |----------------|------------------------|-------------------|-----------------|----------------|--------------------|------------------|------------------|----------------|-----------------|------------------|---------------|------------------|-----------------|------------------|-----------------|-----------------|----------------|--| | | | | | | | | | Grc | Group | | | | | | | | | | | _ | = | | | | | | | | | | | III | // | > | I | IIΛ | 0 | | | | | | | | | | 1 | | | | | | | | | | 4 | | | | | | | | | | Î | | | | | | | | | | Helium | | | | | [| | | | | 1 | | | | | | | | | | 2 | | | 7 | თ | | | | | | | | | | | 11 | 12 | 14 | 16 | 19 | 20 | | | = | Be | | | | | | | | | | | М | ပ | z | 0 | ш | Ne | | | Lithium | Beryllium
4 | | | | | | | | | | | Boron
5 | Carbon
6 | Nitrogen
7 | Oxygen
8 | Fluorine
9 | Neon
10 | | | 23 | 24 | | | | | | | | | | | 27 | 28 | | 32 | 35.5 | 40 | | | _ | Mg | | | | | | | | | | | Ν | Si | | တ | 75 | Ā | | | Sodium | Magnesium
12 | | | | | | | | | | | Aluminium
13 | | Phosphorus
15 | Sulphur
16 | 17 | Argon | | | | 40 | 45 | 48 | 51 | 52 | 55 | 56 | 26 | 59 | 64 | | 70 | 73 | | 62 | 80 | 84 | | | ¥ | Sa | လွင | F | > | ပ် | Mn | Ь | ပိ | Z | Cn | Zn | Ga | Ge | As | Se | Ŗ | 궃 | | | Potassium
) | Calcium
20 | Scandium
21 | Titanium
22 | Vanadium
23 | Chromium
24 | Manganese
25 | Iron
26 | Cobalt
27 | Nickel
28 | Copper
29 | Zinc
30 | Gallium
31 | Germanium
32 | Arsenic
33 | Selenium
34 | Bromine
35 | Krypton
36 | | | 85 | 88 | 68 | 91 | 93 | 96 | | 101 | 103 | 106 | 108 | 112 | 115 | 119 | | 128 | 127 | 131 | | | Rb | S | > | Zr | Q
N | Mo | ည | Ru | R | Pd | Ag | ප | In | Sn | Sb | <u>e</u> | _ | Xe | | | Rubidium | Strontium
38 | Yttrium
39 | Zirconium
40 | Niobium
41 | Molybdenum
42 | Technetium
43 | Ruthenium
44 | _ | Palladium
46 | | Cadmium
48 | Indium
49 | Tin
50 | Antimony
51 | Tellurium
52 | lodine
53 | Xenon
54 | | | 133 | 137 | 139 | 178 | 181 | 184 | 186 | 190 | | 195 | | 201 | 204 | 207 | 209 | | | | | | Cs | Ba | Га | Ξ | Та | ≥ | Re | Os | Ľ | ₹ | Αn | Нg | 11 | Ър | Ξ | | Αŧ | Rn | | | Caesium ; | Barium
56 | Lanthanum 57 * | Hafnium
72 | Tantalum
73 | Tungsten
74 | Rhenium
75 | Osmium
76 | Iridium
77 | Platinum
78 | Gold
79 | Mercury
80 | Thallium
81 | Lead
82 | Bismuth
83 | Polonium
84 | Astatine
85 | Radon
86 | | | | 226 | 227 | | | | | | | | | | | | | | | | | | L | Ra | Ac | | | | | | | | | | | | | | | | | | 5 | 88 | 4 68 | | | | | | | | | | | | | | | | | | 8-71 | 8-71 Lanthanoid series | id series | | 140 | 141 | 144 | | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169 | 173 | 175 | | | 10-103 | 10-103 Actinoid series | Series | | පී | ቯ | Š | | Sm | Ш | | Д | Δ | 웃 | ш | E | Υb | Ľ | | | 2 | | 2 | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | Samarium
62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | Holmium
67 | Erbium
68 | | Ytterbium
70 | Lutetium
71 | | | | _ | 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | | | | Cenum Preseodymium Neodymium Prometrium 58 59 61 61 mass 232 238 7.1 | P | S | | | | 162 | | 167 | 169 | 173 | 175 | |--|-----------------|-----------------------|-----------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|-------------------------| | Certum Praseodymium Neodymium 64 61 61 81 81 81 81 81 81 81 81 81 81 81 81 81 | | | ם | рg | Tp | ۵ | 우 | ш | Tm | Υb | Γn | | 232 238 | Neodymium
60 | Samarium Et 63 | rropium (| Gadolinium
64 | | Dysprosium
66 | 25 | Erbium
68 | Thulium
69 | Ytterbium
70 | Lutetium
71 | | Ē | 238 | | | | | | | | | | | | X = atomic symbol | dN
O | Pu | Am | Cm | 番 | ວັ | Es | Fm | Md | Š | - | | | Uranium 92 | Plutonium Am
94 95 | ericium | | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | nobelium Lawrey 102 102 | т В ⋛ The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).